{ "id": "1306.1998", "version": "v1", "published": "2013-06-09T09:20:59.000Z", "updated": "2013-06-09T09:20:59.000Z", "title": "Large Deviations of Shepp Statistics for Fractional Brownian Motion", "authors": [ "Enkelejd Hashorva", "Zhongquan Tan" ], "comment": "8 pages", "doi": "10.1016/j.spl.2013.06.013", "categories": [ "math.PR", "math.ST", "stat.TH" ], "abstract": "Define the incremental fractional Brownian field $B_{H}(s+\\tau)-B_{H}(s), H\\in (0,1)$, where $B_{H}(s)$ is a standard fractional Brownian motion with Hurst index $H\\in(0,1)$. In this paper we derive the exact asymptotic behaviour of the maximum $\\max_{(\\tau,s)\\in[0,1]\\times[0,T]} (B_{H}(s+\\tau)-B_{H}(s)) $ for any $H\\in (0,1/2)$ complimenting thus the result of Zholud (2008) for the Brownian motion.", "revisions": [ { "version": "v1", "updated": "2013-06-09T09:20:59.000Z" } ], "analyses": { "subjects": [ "60G15", "60G70" ], "keywords": [ "shepp statistics", "large deviations", "incremental fractional brownian field", "standard fractional brownian motion", "exact asymptotic behaviour" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.1998H" } } }