arXiv:1306.0724 [math.FA]AbstractReferencesReviewsResources
Wandering subspaces of the Bergman space and the Dirichlet space over polydisc
A. Chattopadhyay, B. Krishna Das, Jaydeb Sarkar, S. Sarkar
Published 2013-06-04Version 1
Doubly commutativity of invariant subspaces of the Bergman space and the Dirichlet space over the unit polydisc $\mathbb{D}^n$ (with $ n \geq 2$) is investigated. We show that for any non-empty subset $\alpha=\{\alpha_1,\dots,\alpha_k\}$ of $\{1,\dots,n\}$ and doubly commuting invariant subspace $\s$ of the Bergman space or the Dirichlet space over $\D^n$, the tuple consists of restrictions of co-ordinate multiplication operators $M_{\alpha}|_\s:=(M_{z_{\alpha_1}}|_\s,\dots, M_{z_{\alpha_k}}|_\s)$ always possesses wandering subspace of the form \[\bigcap_{i=1}^k(\s\ominus z_{\alpha_i}\s). \]
Comments: 10 pages
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1605.02700 [math.FA] (Published 2016-05-09)
Is the Dirichlet Space a Quotient of $DA_n$?
arXiv:math/0504179 [math.FA] (Published 2005-04-08)
Composition Operators on the Dirichlet Space and Related Problems
arXiv:1311.7420 [math.FA] (Published 2013-11-28)
A generalization of Toeplitz operators on the Bergman space