{ "id": "1306.0724", "version": "v1", "published": "2013-06-04T10:27:24.000Z", "updated": "2013-06-04T10:27:24.000Z", "title": "Wandering subspaces of the Bergman space and the Dirichlet space over polydisc", "authors": [ "A. Chattopadhyay", "B. Krishna Das", "Jaydeb Sarkar", "S. Sarkar" ], "comment": "10 pages", "categories": [ "math.FA" ], "abstract": "Doubly commutativity of invariant subspaces of the Bergman space and the Dirichlet space over the unit polydisc $\\mathbb{D}^n$ (with $ n \\geq 2$) is investigated. We show that for any non-empty subset $\\alpha=\\{\\alpha_1,\\dots,\\alpha_k\\}$ of $\\{1,\\dots,n\\}$ and doubly commuting invariant subspace $\\s$ of the Bergman space or the Dirichlet space over $\\D^n$, the tuple consists of restrictions of co-ordinate multiplication operators $M_{\\alpha}|_\\s:=(M_{z_{\\alpha_1}}|_\\s,\\dots, M_{z_{\\alpha_k}}|_\\s)$ always possesses wandering subspace of the form \\[\\bigcap_{i=1}^k(\\s\\ominus z_{\\alpha_i}\\s). \\]", "revisions": [ { "version": "v1", "updated": "2013-06-04T10:27:24.000Z" } ], "analyses": { "keywords": [ "dirichlet space", "bergman space", "co-ordinate multiplication operators", "non-empty subset", "tuple consists" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1306.0724C" } } }