arXiv:1305.6750 [math.FA]AbstractReferencesReviewsResources
Equilateral sets in uniformly smooth Banach spaces
D. Freeman, E. Odell, B. Sari, Th. Schlumprecht
Published 2013-05-29Version 1
Let $X$ be an infinite dimensional uniformly smooth Banach space. We prove that $X$ contains an infinite equilateral set. That is, there exists a constant $\lambda>0$ and an infinite sequence $(x_i)_{i=1}^\infty\subset X$ such that $\|x_i-x_j\|=\lambda$ for all $i\neq j$.
Comments: 11 pages
Categories: math.FA
Keywords: infinite dimensional uniformly smooth banach, dimensional uniformly smooth banach space, infinite equilateral set, infinite sequence
Tags: journal article
Related articles: Most relevant | Search more
Equilateral sets in infinite dimensional Banach spaces
arXiv:1606.07977 [math.FA] (Published 2016-06-25)
Subspace Condition for Bernstein Lethargy Theorem
arXiv:1802.01902 [math.FA] (Published 2018-02-06)
Schauder bases and the decay rate of the heat equation