arXiv Analytics

Sign in

arXiv:1305.6750 [math.FA]AbstractReferencesReviewsResources

Equilateral sets in uniformly smooth Banach spaces

D. Freeman, E. Odell, B. Sari, Th. Schlumprecht

Published 2013-05-29Version 1

Let $X$ be an infinite dimensional uniformly smooth Banach space. We prove that $X$ contains an infinite equilateral set. That is, there exists a constant $\lambda>0$ and an infinite sequence $(x_i)_{i=1}^\infty\subset X$ such that $\|x_i-x_j\|=\lambda$ for all $i\neq j$.

Related articles: Most relevant | Search more
arXiv:1111.2273 [math.FA] (Published 2011-11-09, updated 2013-04-24)
Equilateral sets in infinite dimensional Banach spaces
arXiv:1606.07977 [math.FA] (Published 2016-06-25)
Subspace Condition for Bernstein Lethargy Theorem
arXiv:1802.01902 [math.FA] (Published 2018-02-06)
Schauder bases and the decay rate of the heat equation