{ "id": "1305.6750", "version": "v1", "published": "2013-05-29T10:18:34.000Z", "updated": "2013-05-29T10:18:34.000Z", "title": "Equilateral sets in uniformly smooth Banach spaces", "authors": [ "D. Freeman", "E. Odell", "B. Sari", "Th. Schlumprecht" ], "comment": "11 pages", "doi": "10.1112/S0025579313000260", "categories": [ "math.FA" ], "abstract": "Let $X$ be an infinite dimensional uniformly smooth Banach space. We prove that $X$ contains an infinite equilateral set. That is, there exists a constant $\\lambda>0$ and an infinite sequence $(x_i)_{i=1}^\\infty\\subset X$ such that $\\|x_i-x_j\\|=\\lambda$ for all $i\\neq j$.", "revisions": [ { "version": "v1", "updated": "2013-05-29T10:18:34.000Z" } ], "analyses": { "subjects": [ "46B20", "46B04" ], "keywords": [ "infinite dimensional uniformly smooth banach", "dimensional uniformly smooth banach space", "infinite equilateral set", "infinite sequence" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1305.6750F" } } }