arXiv:1304.3922 [math.NT]AbstractReferencesReviewsResources
Secant Zeta Functions
Matilde Lalín, Francis Rodrigue, Mathew Rogers
Published 2013-04-14, updated 2013-07-02Version 2
We study the series $\psi_s(z):=\sum_{n=1}^{\infty} \sec(n\pi z)n^{-s}$, and prove that it converges under mild restrictions on $z$ and $s$. The function possesses a modular transformation property, which allows us to evaluate $\psi_{s}(z)$ explicitly at certain quadratic irrational values of $z$. This supports our conjecture that $\pi^{-k} \psi_{k}(\sqrt{j})\in\mathbb{Q}$ whenever $k$ and $j$ are positive integers with $k$ even. We conclude with some speculations on Bernoulli numbers.
Comments: 10 pages
Categories: math.NT
Related articles: Most relevant | Search more
Algebraic Structures of Bernoulli Numbers and Polynomials
arXiv:math/0411498 [math.NT] (Published 2004-11-22)
The structure of Bernoulli numbers
arXiv:0709.2947 [math.NT] (Published 2007-09-19)
Sums of Products of Bernoulli numbers of the second kind