{ "id": "1304.3922", "version": "v2", "published": "2013-04-14T16:28:33.000Z", "updated": "2013-07-02T15:44:48.000Z", "title": "Secant Zeta Functions", "authors": [ "Matilde LalĂ­n", "Francis Rodrigue", "Mathew Rogers" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "We study the series $\\psi_s(z):=\\sum_{n=1}^{\\infty} \\sec(n\\pi z)n^{-s}$, and prove that it converges under mild restrictions on $z$ and $s$. The function possesses a modular transformation property, which allows us to evaluate $\\psi_{s}(z)$ explicitly at certain quadratic irrational values of $z$. This supports our conjecture that $\\pi^{-k} \\psi_{k}(\\sqrt{j})\\in\\mathbb{Q}$ whenever $k$ and $j$ are positive integers with $k$ even. We conclude with some speculations on Bernoulli numbers.", "revisions": [ { "version": "v2", "updated": "2013-07-02T15:44:48.000Z" } ], "analyses": { "subjects": [ "33E20", "33B30", "11L03" ], "keywords": [ "secant zeta functions", "quadratic irrational values", "modular transformation property", "mild restrictions", "bernoulli numbers" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1304.3922L" } } }