arXiv:1303.2729 [math.CO]AbstractReferencesReviewsResources
A note on sumsets of subgroups in $\mathbb Z_p^*$
Published 2013-03-12, updated 2013-05-23Version 2
Let $A$ be a multiplicative subgroup of $\mathbb Z_p^*$. Define the $k$-fold sumset of $A$ to be $kA=\{x_1+\dots+x_k:x_i \in A,1\leq i\leq k\}$. We show that $6A\supseteq \mathbb Z_p^*$ for $|A| > p^{\frac {11}{23} +\epsilon}$. In addition, we extend a result of Shkredov to show that $|2A|\gg |A|^{\frac 85-\epsilon}$ for $|A|\ll p^{\frac 59}$.
Categories: math.CO
Keywords: fold sumset, multiplicative subgroup
Related articles: Most relevant | Search more
arXiv:1607.00563 [math.CO] (Published 2016-07-02)
On the additive bases problem in finite fields
arXiv:2405.19589 [math.CO] (Published 2024-05-30)
Knights are 24/13 times faster than the king
arXiv:2412.18598 [math.CO] (Published 2024-12-24)
Relative sizes of iterated sumsets