{ "id": "1303.2729", "version": "v2", "published": "2013-03-12T00:15:39.000Z", "updated": "2013-05-23T18:58:41.000Z", "title": "A note on sumsets of subgroups in $\\mathbb Z_p^*$", "authors": [ "Derrick Hart" ], "categories": [ "math.CO" ], "abstract": "Let $A$ be a multiplicative subgroup of $\\mathbb Z_p^*$. Define the $k$-fold sumset of $A$ to be $kA=\\{x_1+\\dots+x_k:x_i \\in A,1\\leq i\\leq k\\}$. We show that $6A\\supseteq \\mathbb Z_p^*$ for $|A| > p^{\\frac {11}{23} +\\epsilon}$. In addition, we extend a result of Shkredov to show that $|2A|\\gg |A|^{\\frac 85-\\epsilon}$ for $|A|\\ll p^{\\frac 59}$.", "revisions": [ { "version": "v2", "updated": "2013-05-23T18:58:41.000Z" } ], "analyses": { "keywords": [ "fold sumset", "multiplicative subgroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1303.2729H" } } }