arXiv Analytics

Sign in

arXiv:1302.2358 [math.AG]AbstractReferencesReviewsResources

A Real Nullstellensatz for Free Modules

Jaka Cimpric

Published 2013-02-10, updated 2013-07-07Version 2

Let $A$ be the algebra of all $n \times n$ matrices with entries from $\RR[x_1,\ldots,x_d]$ and let $G_1,\ldots,G_m,F \in A$. We will show that $F(a)v=0$ for every $a \in \RR^d$ and $v \in \RR^n$ such that $G_i(a)v=0$ for all $i$ if and only if $F$ belongs to the smallest real left ideal of $A$ which contains $G_1,\ldots,G_m$. Here a left ideal $J$ of $A$ is real if for every $H_1,\ldots,H_k \in A$ such that $H_1^T H_1+\ldots+H_k^T H_k \in J+J^T$ we have that $H_1,\ldots,H_k \in J$. We call this result the one-sided Real Nullstellensatz for matrix polynomials. We first prove by induction on $n$ that it holds when $G_1,\ldots,G_m,F$ have zeros everywhere except in the first row. This auxiliary result can be formulated as a Real Nullstellensatz for the free module $\RR[x_1,\ldots,x_d]^n$.

Comments: v1 7 pages. v2 9 pages: revised abstract, extended introduction and references. To appear in J. Algebra
Categories: math.AG
Subjects: 13J30
Related articles: Most relevant | Search more
arXiv:1406.7442 [math.AG] (Published 2014-06-28)
Finsler's Lemma for Matrix Polynomials
arXiv:0807.3296 [math.AG] (Published 2008-07-21, updated 2012-12-24)
Witt groups of Grassmann varieties
arXiv:math/0101189 [math.AG] (Published 2001-01-23, updated 2001-12-18)
Formality of equivariant intersection cohomology