{ "id": "1302.2358", "version": "v2", "published": "2013-02-10T20:23:27.000Z", "updated": "2013-07-07T20:40:55.000Z", "title": "A Real Nullstellensatz for Free Modules", "authors": [ "Jaka Cimpric" ], "comment": "v1 7 pages. v2 9 pages: revised abstract, extended introduction and references. To appear in J. Algebra", "categories": [ "math.AG" ], "abstract": "Let $A$ be the algebra of all $n \\times n$ matrices with entries from $\\RR[x_1,\\ldots,x_d]$ and let $G_1,\\ldots,G_m,F \\in A$. We will show that $F(a)v=0$ for every $a \\in \\RR^d$ and $v \\in \\RR^n$ such that $G_i(a)v=0$ for all $i$ if and only if $F$ belongs to the smallest real left ideal of $A$ which contains $G_1,\\ldots,G_m$. Here a left ideal $J$ of $A$ is real if for every $H_1,\\ldots,H_k \\in A$ such that $H_1^T H_1+\\ldots+H_k^T H_k \\in J+J^T$ we have that $H_1,\\ldots,H_k \\in J$. We call this result the one-sided Real Nullstellensatz for matrix polynomials. We first prove by induction on $n$ that it holds when $G_1,\\ldots,G_m,F$ have zeros everywhere except in the first row. This auxiliary result can be formulated as a Real Nullstellensatz for the free module $\\RR[x_1,\\ldots,x_d]^n$.", "revisions": [ { "version": "v2", "updated": "2013-07-07T20:40:55.000Z" } ], "analyses": { "subjects": [ "13J30" ], "keywords": [ "free module", "smallest real left ideal", "one-sided real nullstellensatz", "matrix polynomials", "first row" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1302.2358C" } } }