arXiv Analytics

Sign in

arXiv:1301.3334 [math.CO]AbstractReferencesReviewsResources

Balances of $m$-bonacci words

Karel Břinda, Edita Pelantová, Ondřej Turek

Published 2013-01-15, updated 2014-05-26Version 2

The $m$-bonacci word is a generalization of the Fibonacci word to the $m$-letter alphabet $\mathcal{A} = {0,...,m-1}$. It is the unique fixed point of the Pisot--type substitution $ \varphi_m: 0\to 01, 1\to 02, ..., (m-2)\to0(m-1), and (m-1)\to0$. A result of Adamczewski implies the existence of constants $c^{(m)}$ such that the $m$-bonacci word is $c^{(m)}$-balanced, i.e., numbers of letter $a$ occurring in two factors of the same length differ at most by $c^{(m)}$ for any letter $a\in \mathcal{A}$. The constants $c^{(m)}$ have been already determined for $m=2$ and $m=3$. In this paper we study the bounds $c^{(m)}$ for a general $m\geq2$. We show that the $m$-bonacci word is $(\lfloor \kappa m \rfloor +12)$-balanced, where $\kappa \approx 0.58$. For $m\leq 12$, we improve the constant $c^{(m)}$ by a computer numerical calculation to the value $\lceil\frac{m+1}{2}\rceil$.

Journal: Fundamenta Informaticae 132(1), pp. 33-61, 2014
Categories: math.CO, cs.DM
Related articles: Most relevant | Search more
arXiv:1710.02782 [math.CO] (Published 2017-10-08)
More properties of the Fibonacci word on an infinite alphabet
arXiv:0708.4400 [math.CO] (Published 2007-08-31)
Powers in a class of A-strict standard episturmian words
arXiv:1907.10816 [math.CO] (Published 2019-07-25)
Antipowers in Uniform Morphic Words and the Fibonacci Word