{ "id": "1301.3334", "version": "v2", "published": "2013-01-15T13:13:32.000Z", "updated": "2014-05-26T19:57:13.000Z", "title": "Balances of $m$-bonacci words", "authors": [ "Karel Břinda", "Edita Pelantová", "Ondřej Turek" ], "journal": "Fundamenta Informaticae 132(1), pp. 33-61, 2014", "doi": "10.3233/fi-2014-1031", "categories": [ "math.CO", "cs.DM" ], "abstract": "The $m$-bonacci word is a generalization of the Fibonacci word to the $m$-letter alphabet $\\mathcal{A} = {0,...,m-1}$. It is the unique fixed point of the Pisot--type substitution $ \\varphi_m: 0\\to 01, 1\\to 02, ..., (m-2)\\to0(m-1), and (m-1)\\to0$. A result of Adamczewski implies the existence of constants $c^{(m)}$ such that the $m$-bonacci word is $c^{(m)}$-balanced, i.e., numbers of letter $a$ occurring in two factors of the same length differ at most by $c^{(m)}$ for any letter $a\\in \\mathcal{A}$. The constants $c^{(m)}$ have been already determined for $m=2$ and $m=3$. In this paper we study the bounds $c^{(m)}$ for a general $m\\geq2$. We show that the $m$-bonacci word is $(\\lfloor \\kappa m \\rfloor +12)$-balanced, where $\\kappa \\approx 0.58$. For $m\\leq 12$, we improve the constant $c^{(m)}$ by a computer numerical calculation to the value $\\lceil\\frac{m+1}{2}\\rceil$.", "revisions": [ { "version": "v2", "updated": "2014-05-26T19:57:13.000Z" } ], "analyses": { "keywords": [ "fibonacci word", "pisot-type substitution", "computer numerical calculation", "adamczewski implies", "length differ" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1301.3334B" } } }