arXiv Analytics

Sign in

arXiv:1301.1282 [math.AP]AbstractReferencesReviewsResources

Control for Schrödinger equations on 2-tori: rough potentials

Jean Bourgain, Nicolas Burq, Maciej Zworski

Published 2013-01-07Version 1

For the Schr\"odinger equation, $ (i \partial_t + \Delta) u = 0 $ on a torus, an arbitrary non-empty open set $ \Omega $ provides control and observability of the solution: $ \| u |_{t = 0} \|_{L^2 (\T^2)} \leq K_T \| u \|_{L^2 ([0,T] \times \Omega)} $. We show that the same result remains true for $ (i \partial_t + \Delta - V) u = 0 $ where $ V \in L^2 (\T^2) $, and $ \T^2 $ is a (rational or irrational) torus. That extends the results of \cite{AM}, and \cite{BZ4} where the observability was proved for $ V \in C (\T^2) $ and conjectured for $ V \in L^\infty (\T^2) $. The higher dimensional generalization remains open for $ V \in L^\infty (\T^n) $.

Related articles: Most relevant | Search more
arXiv:0903.5435 [math.AP] (Published 2009-03-31, updated 2009-11-13)
Semiclassical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities
arXiv:1806.10021 [math.AP] (Published 2018-06-26)
Limited regularity of solutions to fractional heat and Schrödinger equations
arXiv:1704.02131 [math.AP] (Published 2017-04-07)
A characterization related to Schrödinger equations on Riemannian manifolds