{ "id": "1301.1282", "version": "v1", "published": "2013-01-07T17:43:25.000Z", "updated": "2013-01-07T17:43:25.000Z", "title": "Control for Schrödinger equations on 2-tori: rough potentials", "authors": [ "Jean Bourgain", "Nicolas Burq", "Maciej Zworski" ], "categories": [ "math.AP", "math.OC" ], "abstract": "For the Schr\\\"odinger equation, $ (i \\partial_t + \\Delta) u = 0 $ on a torus, an arbitrary non-empty open set $ \\Omega $ provides control and observability of the solution: $ \\| u |_{t = 0} \\|_{L^2 (\\T^2)} \\leq K_T \\| u \\|_{L^2 ([0,T] \\times \\Omega)} $. We show that the same result remains true for $ (i \\partial_t + \\Delta - V) u = 0 $ where $ V \\in L^2 (\\T^2) $, and $ \\T^2 $ is a (rational or irrational) torus. That extends the results of \\cite{AM}, and \\cite{BZ4} where the observability was proved for $ V \\in C (\\T^2) $ and conjectured for $ V \\in L^\\infty (\\T^2) $. The higher dimensional generalization remains open for $ V \\in L^\\infty (\\T^n) $.", "revisions": [ { "version": "v1", "updated": "2013-01-07T17:43:25.000Z" } ], "analyses": { "keywords": [ "schrödinger equations", "rough potentials", "higher dimensional generalization remains open", "arbitrary non-empty open set", "result remains true" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }