arXiv:1212.6672 [math.FA]AbstractReferencesReviewsResources
A note on the hypercontractivity of the polynomial Bohnenblust--Hille inequality
Published 2012-12-29, updated 2013-01-02Version 2
For $\mathbb{K}=\mathbb{R}$ or $\mathbb{C}$ and $m$ a positive integer, we remark that there is a constant $C$ so that, for all $r\in\lbrack1,\frac {2m}{m+1}],$ the supremum of the ratio between the $\ell_{r}$ norm of the coefficients of any nonzero $m$-homogeneous polynomial $P:\ell_{\infty}% ^{n}(\mathbb{K}) \rightarrow\mathbb{K}$ and its supremum norm is dominated by $C^{m}\cdot n^{(\frac{m}{r}-\frac{m+1}{2})}$ and, moreover, we prove that the exponent $\frac{m}{r}-\frac{m+1}{2}$ is optimal.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1502.02173 [math.FA] (Published 2015-02-07)
Sharp values for the constants in the polynomial Bohnenblust-Hille inequality
arXiv:1309.6063 [math.FA] (Published 2013-09-24)
Summation of coefficients of polynomials on $\ell_{p}$ spaces
arXiv:1302.1736 [math.FA] (Published 2013-02-07)
Dynamics of perturbations of the identity operator by multiples of the backward shift on $l^{\infty}(\mathbb{N})$