{ "id": "1212.6672", "version": "v2", "published": "2012-12-29T23:13:48.000Z", "updated": "2013-01-02T20:55:49.000Z", "title": "A note on the hypercontractivity of the polynomial Bohnenblust--Hille inequality", "authors": [ "Daniel Pellegrino" ], "categories": [ "math.FA" ], "abstract": "For $\\mathbb{K}=\\mathbb{R}$ or $\\mathbb{C}$ and $m$ a positive integer, we remark that there is a constant $C$ so that, for all $r\\in\\lbrack1,\\frac {2m}{m+1}],$ the supremum of the ratio between the $\\ell_{r}$ norm of the coefficients of any nonzero $m$-homogeneous polynomial $P:\\ell_{\\infty}% ^{n}(\\mathbb{K}) \\rightarrow\\mathbb{K}$ and its supremum norm is dominated by $C^{m}\\cdot n^{(\\frac{m}{r}-\\frac{m+1}{2})}$ and, moreover, we prove that the exponent $\\frac{m}{r}-\\frac{m+1}{2}$ is optimal.", "revisions": [ { "version": "v2", "updated": "2013-01-02T20:55:49.000Z" } ], "analyses": { "keywords": [ "polynomial bohnenblust-hille inequality", "hypercontractivity", "supremum norm", "positive integer", "coefficients" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1212.6672P" } } }