arXiv:1211.6542 [math.AP]AbstractReferencesReviewsResources
Remarks on some quasilinear equations with gradient terms and measure data
Marie-Françoise Bidaut-Véron, Marta Garcia-Huidobro, Laurent Veron
Published 2012-11-28, updated 2013-02-13Version 2
Let $\Omega \subset \mathbb{R}^{N}$ be a smooth bounded domain, $H$ a Caratheodory function defined in $\Omega \times \mathbb{R\times R}^{N},$ and $\mu $ a bounded Radon measure in $\Omega .$ We study the problem% \begin{equation*} -\Delta_{p}u+H(x,u,\nabla u)=\mu \quad \text{in}\Omega,\qquad u=0\quad \text{on}\partial \Omega, \end{equation*} where $\Delta_{p}$ is the $p$-Laplacian ($p>1$)$,$ and we emphasize the case $H(x,u,\nabla u)=\pm \left\| \nabla u\right\| ^{q}$ ($q>0$). We obtain an existence result under subcritical growth assumptions on $H,$ we give necessary conditions of existence in terms of capacity properties, and we prove removability results of eventual singularities. In the supercritical case, when $\mu \geqq 0$ and $H$ is an absorption term, i.e. $% H\geqq 0,$ we give two sufficient conditions for existence of a nonnegative solution.