{ "id": "1211.6542", "version": "v2", "published": "2012-11-28T08:31:24.000Z", "updated": "2013-02-13T15:25:42.000Z", "title": "Remarks on some quasilinear equations with gradient terms and measure data", "authors": [ "Marie-Françoise Bidaut-Véron", "Marta Garcia-Huidobro", "Laurent Veron" ], "comment": "To appear in Contemporary Mathematics", "categories": [ "math.AP" ], "abstract": "Let $\\Omega \\subset \\mathbb{R}^{N}$ be a smooth bounded domain, $H$ a Caratheodory function defined in $\\Omega \\times \\mathbb{R\\times R}^{N},$ and $\\mu $ a bounded Radon measure in $\\Omega .$ We study the problem% \\begin{equation*} -\\Delta_{p}u+H(x,u,\\nabla u)=\\mu \\quad \\text{in}\\Omega,\\qquad u=0\\quad \\text{on}\\partial \\Omega, \\end{equation*} where $\\Delta_{p}$ is the $p$-Laplacian ($p>1$)$,$ and we emphasize the case $H(x,u,\\nabla u)=\\pm \\left\\| \\nabla u\\right\\| ^{q}$ ($q>0$). We obtain an existence result under subcritical growth assumptions on $H,$ we give necessary conditions of existence in terms of capacity properties, and we prove removability results of eventual singularities. In the supercritical case, when $\\mu \\geqq 0$ and $H$ is an absorption term, i.e. $% H\\geqq 0,$ we give two sufficient conditions for existence of a nonnegative solution.", "revisions": [ { "version": "v2", "updated": "2013-02-13T15:25:42.000Z" } ], "analyses": { "keywords": [ "gradient terms", "quasilinear equations", "measure data", "existence result", "absorption term" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.6542B" } } }