arXiv Analytics

Sign in

arXiv:1211.5755 [math.CO]AbstractReferencesReviewsResources

Integer decomposition property of dilated polytopes

David A. Cox, Christian Haase, Takayuki Hibi, Akihiro Higashitani

Published 2012-11-25, updated 2013-06-15Version 2

Let $\mathcal{P} \subset \mathbb{R}^N$ be an integral convex polytope of dimension $d$ and write $k \mathcal{P}$, where $k = 1, 2, \ldots$, for dilations of $\mathcal{P}$. We say that $\mathcal{P}$ possesses the integer decomposition property if, for any integer $k = 1, 2, \ldots$ and for any $\alpha \in k \mathcal{P} \cap \mathbb{Z}^N$, there exist $\alpha_{1}, \ldots, \alpha_k$ belonging to $\mathcal{P} \cap \mathbb{Z}^N$ such that $\alpha = \alpha_1 + \cdots + \alpha_k$. A fundamental question is to determine the integers $k > 0$ for which the dilated polytope $k\mathcal{P}$ possesses the integer decomposition property. In the present paper, combinatorial invariants related to the integer decomposition property of dilated polytopes will be proposed and studied.

Related articles: Most relevant | Search more
arXiv:2107.05788 [math.CO] (Published 2021-07-13)
Integer decomposition property of polytopes
arXiv:1608.01614 [math.CO] (Published 2016-08-04)
Detecting the Integer Decomposition Property and Ehrhart Unimodality in Reflexive Simplices
arXiv:1710.00252 [math.CO] (Published 2017-09-30)
Laplacian Simplices Associated to Digraphs