{ "id": "1211.5755", "version": "v2", "published": "2012-11-25T10:48:50.000Z", "updated": "2013-06-15T02:19:59.000Z", "title": "Integer decomposition property of dilated polytopes", "authors": [ "David A. Cox", "Christian Haase", "Takayuki Hibi", "Akihiro Higashitani" ], "comment": "16 pages, comments welcome", "categories": [ "math.CO", "math.AC", "math.AG" ], "abstract": "Let $\\mathcal{P} \\subset \\mathbb{R}^N$ be an integral convex polytope of dimension $d$ and write $k \\mathcal{P}$, where $k = 1, 2, \\ldots$, for dilations of $\\mathcal{P}$. We say that $\\mathcal{P}$ possesses the integer decomposition property if, for any integer $k = 1, 2, \\ldots$ and for any $\\alpha \\in k \\mathcal{P} \\cap \\mathbb{Z}^N$, there exist $\\alpha_{1}, \\ldots, \\alpha_k$ belonging to $\\mathcal{P} \\cap \\mathbb{Z}^N$ such that $\\alpha = \\alpha_1 + \\cdots + \\alpha_k$. A fundamental question is to determine the integers $k > 0$ for which the dilated polytope $k\\mathcal{P}$ possesses the integer decomposition property. In the present paper, combinatorial invariants related to the integer decomposition property of dilated polytopes will be proposed and studied.", "revisions": [ { "version": "v2", "updated": "2013-06-15T02:19:59.000Z" } ], "analyses": { "subjects": [ "52B20", "14Q15", "14M25" ], "keywords": [ "integer decomposition property", "dilated polytope", "integral convex polytope", "fundamental question", "combinatorial invariants" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1211.5755C" } } }