arXiv Analytics

Sign in

arXiv:1209.4329 [math.NT]AbstractReferencesReviewsResources

On quotients of Riemann zeta values at odd and even integer arguments

Bernd C. Kellner

Published 2012-09-19, updated 2014-10-28Version 2

We show for even positive integers $n$ that the quotient of the Riemann zeta values $\zeta(n+1)$ and $\zeta(n)$ satisfies the equation $$\frac{\zeta(n+1)}{\zeta(n)} = (1-\frac{1}{n}) (1-\frac{1}{2^{n+1}-1}) \frac{\mathcal{L}^\star(\mathfrak{p}_n)}{\mathfrak{p}_n'(0)},$$ where $\mathfrak{p}_n \in \mathbb{Z}[x]$ is a certain monic polynomial of degree $n$ and $\mathcal{L}^\star: \mathbb{C}[x] \to \mathbb{C}$ is a linear functional, which is connected with a special $L$-function. There exists the decomposition $\mathfrak{p}_n(x) = x(x+1) \mathfrak{q}_n(x)$. If $n = p+1$ where $p$ is an odd prime, then $\mathfrak{q}_n$ is an Eisenstein polynomial and therefore irreducible over $\mathbb{Z}[x]$.

Comments: 14 pages; final revised version
Journal: J. Number Theory 133 (2013), No. 8, 2684-2698
Categories: math.NT
Subjects: 11M06, 11R09, 11B73
Related articles: Most relevant | Search more
arXiv:1307.1840 [math.NT] (Published 2013-07-07)
Primality test for numbers of the form $(2p)^{2^n}+1$
arXiv:1405.7294 [math.NT] (Published 2014-05-28)
A converse to a theorem of Gross, Zagier, and Kolyvagin
arXiv:1012.3919 [math.NT] (Published 2010-12-17)
Constructing $x^2$ for primes $p=ax^2+by^2$