{ "id": "1209.4329", "version": "v2", "published": "2012-09-19T18:54:36.000Z", "updated": "2014-10-28T18:32:15.000Z", "title": "On quotients of Riemann zeta values at odd and even integer arguments", "authors": [ "Bernd C. Kellner" ], "comment": "14 pages; final revised version", "journal": "J. Number Theory 133 (2013), No. 8, 2684-2698", "doi": "10.1016/j.jnt.2013.02.008", "categories": [ "math.NT" ], "abstract": "We show for even positive integers $n$ that the quotient of the Riemann zeta values $\\zeta(n+1)$ and $\\zeta(n)$ satisfies the equation $$\\frac{\\zeta(n+1)}{\\zeta(n)} = (1-\\frac{1}{n}) (1-\\frac{1}{2^{n+1}-1}) \\frac{\\mathcal{L}^\\star(\\mathfrak{p}_n)}{\\mathfrak{p}_n'(0)},$$ where $\\mathfrak{p}_n \\in \\mathbb{Z}[x]$ is a certain monic polynomial of degree $n$ and $\\mathcal{L}^\\star: \\mathbb{C}[x] \\to \\mathbb{C}$ is a linear functional, which is connected with a special $L$-function. There exists the decomposition $\\mathfrak{p}_n(x) = x(x+1) \\mathfrak{q}_n(x)$. If $n = p+1$ where $p$ is an odd prime, then $\\mathfrak{q}_n$ is an Eisenstein polynomial and therefore irreducible over $\\mathbb{Z}[x]$.", "revisions": [ { "version": "v1", "updated": "2012-09-19T18:54:36.000Z", "abstract": "We show for even positive integers $n$ that the quotient of the Riemann zeta values $\\zeta(n+1)$ and $\\zeta(n)$ satisfies the equation [\\frac{\\zeta(n+1)}{\\zeta(n)} = (1-\\frac{1}{n}) (1-\\frac{1}{2^{n+1}-1}) \\frac{\\mathcal{L}^\\star(\\mathfrak{p}_n)}{\\mathfrak{p}_n'(0)},] where $\\mathfrak{p}_n \\in \\ZZ[x]$ is a certain monic polynomial of degree $n$ and $\\mathcal{L}^\\star: \\CC[x] \\to \\CC$ is a linear functional, which is connected with a special $L$-function. There exists the decomposition $\\mathfrak{p}_n(x) = x(x+1) \\mathfrak{q}_n(x)$. If $n = p+1$ where $p$ is an odd prime, then $\\mathfrak{q}_n$ is an Eisenstein polynomial and therefore irreducible over $\\ZZ[x]$.", "comment": "14 pages", "journal": null, "doi": null }, { "version": "v2", "updated": "2014-10-28T18:32:15.000Z" } ], "analyses": { "subjects": [ "11M06", "11R09", "11B73" ], "keywords": [ "riemann zeta values", "integer arguments", "eisenstein polynomial", "linear functional", "odd prime" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.4329K" } } }