arXiv:1209.1587 [math.AT]AbstractReferencesReviewsResources
Characteristic rank of vector bundles over Stiefel manifolds
Július Korbaš, Aniruddha C. Naolekar, Ajay Singh Thakur
Published 2012-09-07Version 1
The characteristic rank of a vector bundle $\xi$ over a finite connected $CW$-complex $X$ is by definition the largest integer $k$, $0\leq k\leq \mathrm{dim}(X)$, such that every cohomology class $x\in H^j(X;\mathbb Z_2)$, $0\leq j\leq k$, is a polynomial in the Stiefel-Whitney classes $w_i(\xi)$. In this note we compute the characteristic rank of vector bundles over the Stiefel manifold $V_k(\mathbb F^n)$, $\mathbb F=\mathbb R,\mathbb C,\mathbb H$.
Journal: Archiv der Mathematik: Volume 99, Issue 6 (2012), Page 577-581
Categories: math.AT
Tags: journal article
Related articles: Most relevant | Search more
arXiv:1307.3031 [math.AT] (Published 2013-07-11)
A note on the characteristic rank and related numbers
arXiv:1209.1507 [math.AT] (Published 2012-09-07)
Note on the Characteristic rank of Vector bundles
arXiv:1909.13278 [math.AT] (Published 2019-09-29)
On Chern classes of tensor products of vector bundles