{ "id": "1209.1587", "version": "v1", "published": "2012-09-07T16:58:50.000Z", "updated": "2012-09-07T16:58:50.000Z", "title": "Characteristic rank of vector bundles over Stiefel manifolds", "authors": [ "Július Korbaš", "Aniruddha C. Naolekar", "Ajay Singh Thakur" ], "journal": "Archiv der Mathematik: Volume 99, Issue 6 (2012), Page 577-581", "doi": "10.1007/s00013-012-0454-3", "categories": [ "math.AT" ], "abstract": "The characteristic rank of a vector bundle $\\xi$ over a finite connected $CW$-complex $X$ is by definition the largest integer $k$, $0\\leq k\\leq \\mathrm{dim}(X)$, such that every cohomology class $x\\in H^j(X;\\mathbb Z_2)$, $0\\leq j\\leq k$, is a polynomial in the Stiefel-Whitney classes $w_i(\\xi)$. In this note we compute the characteristic rank of vector bundles over the Stiefel manifold $V_k(\\mathbb F^n)$, $\\mathbb F=\\mathbb R,\\mathbb C,\\mathbb H$.", "revisions": [ { "version": "v1", "updated": "2012-09-07T16:58:50.000Z" } ], "analyses": { "subjects": [ "57R20", "57T15" ], "keywords": [ "vector bundle", "characteristic rank", "stiefel manifold", "largest integer", "cohomology class" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.1587K" } } }