arXiv:1208.6447 [math.AP]AbstractReferencesReviewsResources
Nonlocal Hardy type inequalities with optimal constants and remainder terms
Vitaly Moroz, Jean Van Schaftingen
Published 2012-08-31Version 1
Using a groundstate transformation, we give a new proof of the optimal Stein-Weiss inequality of Herbst [\int_{\R^N} \int_{\R^N} \frac{\varphi (x)}{\abs{x}^\frac{\alpha}{2}} I_\alpha (x - y) \frac{\varphi (y)}{\abs{y}^\frac{\alpha}{2}}\dif x \dif y \le \mathcal{C}_{N,\alpha, 0}\int_{\R^N} \abs{\varphi}^2,] and of its combinations with the Hardy inequality by Beckner [\int_{\R^N} \int_{\R^N} \frac{\varphi (x)}{\abs{x}^\frac{\alpha + s}{2}} I_\alpha (x - y) \frac{\varphi (y)}{\abs{y}^\frac{\alpha + s}{2}}\dif x \dif y \le \mathcal{C}_{N, \alpha, 1} \int_{\R^N} \abs{\nabla \varphi}^2,] and with the fractional Hardy inequality [\int_{\R^N} \int_{\R^N} \frac{\varphi (x)}{\abs{x}^\frac{\alpha + s}{2}} I_\alpha (x - y) \frac{\varphi (y)}{\abs{y}^\frac{\alpha + s}{2}}\dif x \dif y \le \mathcal{C}_{N, \alpha, s} \mathcal{D}_{N, s} \int_{\R^N} \int_{\R^N} \frac{\bigabs{\varphi (x) - \varphi (y)}^2}{\abs{x-y}^{N+s}}\dif x \dif y] where (I_\alpha) is the Riesz potential, (0 < \alpha < N) and (0 < s < \min(N, 2)). We also prove the optimality of the constants. The method is flexible and yields a sharp expression for the remainder terms in these inequalities.