{ "id": "1208.6447", "version": "v1", "published": "2012-08-31T10:08:52.000Z", "updated": "2012-08-31T10:08:52.000Z", "title": "Nonlocal Hardy type inequalities with optimal constants and remainder terms", "authors": [ "Vitaly Moroz", "Jean Van Schaftingen" ], "comment": "9 pages", "journal": "Ann. Univ. Buchar. Math. Ser. 3 (LXI) (2012), no. 2, 187-200", "categories": [ "math.AP" ], "abstract": "Using a groundstate transformation, we give a new proof of the optimal Stein-Weiss inequality of Herbst [\\int_{\\R^N} \\int_{\\R^N} \\frac{\\varphi (x)}{\\abs{x}^\\frac{\\alpha}{2}} I_\\alpha (x - y) \\frac{\\varphi (y)}{\\abs{y}^\\frac{\\alpha}{2}}\\dif x \\dif y \\le \\mathcal{C}_{N,\\alpha, 0}\\int_{\\R^N} \\abs{\\varphi}^2,] and of its combinations with the Hardy inequality by Beckner [\\int_{\\R^N} \\int_{\\R^N} \\frac{\\varphi (x)}{\\abs{x}^\\frac{\\alpha + s}{2}} I_\\alpha (x - y) \\frac{\\varphi (y)}{\\abs{y}^\\frac{\\alpha + s}{2}}\\dif x \\dif y \\le \\mathcal{C}_{N, \\alpha, 1} \\int_{\\R^N} \\abs{\\nabla \\varphi}^2,] and with the fractional Hardy inequality [\\int_{\\R^N} \\int_{\\R^N} \\frac{\\varphi (x)}{\\abs{x}^\\frac{\\alpha + s}{2}} I_\\alpha (x - y) \\frac{\\varphi (y)}{\\abs{y}^\\frac{\\alpha + s}{2}}\\dif x \\dif y \\le \\mathcal{C}_{N, \\alpha, s} \\mathcal{D}_{N, s} \\int_{\\R^N} \\int_{\\R^N} \\frac{\\bigabs{\\varphi (x) - \\varphi (y)}^2}{\\abs{x-y}^{N+s}}\\dif x \\dif y] where (I_\\alpha) is the Riesz potential, (0 < \\alpha < N) and (0 < s < \\min(N, 2)). We also prove the optimality of the constants. The method is flexible and yields a sharp expression for the remainder terms in these inequalities.", "revisions": [ { "version": "v1", "updated": "2012-08-31T10:08:52.000Z" } ], "analyses": { "keywords": [ "nonlocal hardy type inequalities", "remainder terms", "optimal constants", "fractional hardy inequality", "optimal stein-weiss inequality" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.6447M" } } }