arXiv:1208.3799 [math.FA]AbstractReferencesReviewsResources
A New Proof Of The Asymptotic Limit Of The $Lp$ Norm Of The Sinc Function
Published 2012-08-19Version 1
We improve on the inequality $\displaystyle{\frac{1}{\pi}\int_{-\infty}^{\infty} (\frac{\sin^2 t}{t^2})^pdt\leq \frac{1}{\sqrt p}, {0.2 cm}p\geq 1,}$ showing that $\displaystyle{\frac{1}{\pi}\int_{-\infty}^{\infty} (\frac{\sin^2 t}{t^2})^pdt\leq C(p) \frac{\sqrt{3/\pi}}{\sqrt p},}$ with $\displaystyle{\lim_{p\longrightarrow \infty} C(p)=1,}$ and indeed that {align*} \displaystyle{\lim_{p\longrightarrow \infty}\frac{1}{\pi}\int_{-\infty}^{\infty} (\frac{\sin^2 t}{t^2})^pdt/ \frac{\sqrt{3/\pi}}{\sqrt p}=1.} {align*}
Related articles:
arXiv:2010.14740 [math.FA] (Published 2020-10-28)
Asymptotic limits, Banach limits, and Cesàro means