{ "id": "1208.3799", "version": "v1", "published": "2012-08-19T01:45:15.000Z", "updated": "2012-08-19T01:45:15.000Z", "title": "A New Proof Of The Asymptotic Limit Of The $Lp$ Norm Of The Sinc Function", "authors": [ "R. Kerman", "S. Spektor" ], "comment": "3 pages", "categories": [ "math.FA", "math.CA" ], "abstract": "We improve on the inequality $\\displaystyle{\\frac{1}{\\pi}\\int_{-\\infty}^{\\infty} (\\frac{\\sin^2 t}{t^2})^pdt\\leq \\frac{1}{\\sqrt p}, {0.2 cm}p\\geq 1,}$ showing that $\\displaystyle{\\frac{1}{\\pi}\\int_{-\\infty}^{\\infty} (\\frac{\\sin^2 t}{t^2})^pdt\\leq C(p) \\frac{\\sqrt{3/\\pi}}{\\sqrt p},}$ with $\\displaystyle{\\lim_{p\\longrightarrow \\infty} C(p)=1,}$ and indeed that {align*} \\displaystyle{\\lim_{p\\longrightarrow \\infty}\\frac{1}{\\pi}\\int_{-\\infty}^{\\infty} (\\frac{\\sin^2 t}{t^2})^pdt/ \\frac{\\sqrt{3/\\pi}}{\\sqrt p}=1.} {align*}", "revisions": [ { "version": "v1", "updated": "2012-08-19T01:45:15.000Z" } ], "analyses": { "keywords": [ "asymptotic limit", "sinc function" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.3799K" } } }