arXiv Analytics

Sign in

arXiv:1208.2138 [math.RT]AbstractReferencesReviewsResources

A geometric realization of the $m$-cluster category of type $\tilde{A}$

Hermund André Torkildsen

Published 2012-08-10Version 1

We give a geometric realization of a subcategory of the $m$-cluster category $\mathcal{C}^m$ of type $\widetilde{A}_{p,q}$, by using $(m+2)$-angulations of an annulus with $p+q$ marked points. We also give a bijection between an equivalence class of $(m+2)$-angulations and the mutation class of coloured quivers of type $\widetilde{A}_{p,q}$.

Comments: 23 pages, 16 figures
Categories: math.RT, math.CO
Related articles: Most relevant | Search more
arXiv:1706.06778 [math.RT] (Published 2017-06-21)
A geometric realization of the $m$-cluster categories of type $\tilde{D_n}$
arXiv:1303.1684 [math.RT] (Published 2013-03-07)
Ptolemy diagrams and torsion pairs in the cluster categories of Dynkin type D
arXiv:1912.00427 [math.RT] (Published 2019-12-01)
A geometric realization of socle-projective categories for posets of type $\mathbb{A}$