{ "id": "1208.2138", "version": "v1", "published": "2012-08-10T10:48:20.000Z", "updated": "2012-08-10T10:48:20.000Z", "title": "A geometric realization of the $m$-cluster category of type $\\tilde{A}$", "authors": [ "Hermund André Torkildsen" ], "comment": "23 pages, 16 figures", "categories": [ "math.RT", "math.CO" ], "abstract": "We give a geometric realization of a subcategory of the $m$-cluster category $\\mathcal{C}^m$ of type $\\widetilde{A}_{p,q}$, by using $(m+2)$-angulations of an annulus with $p+q$ marked points. We also give a bijection between an equivalence class of $(m+2)$-angulations and the mutation class of coloured quivers of type $\\widetilde{A}_{p,q}$.", "revisions": [ { "version": "v1", "updated": "2012-08-10T10:48:20.000Z" } ], "analyses": { "keywords": [ "cluster category", "geometric realization", "angulations", "equivalence class" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1208.2138A" } } }