arXiv Analytics

Sign in

arXiv:1207.5107 [math.NT]AbstractReferencesReviewsResources

Evaluation of the convolution sums $\sum_{l+15m=n} σ(l) σ(m)$ and $\sum_{3l+5m=n} σ(l) σ(m)$ and some applications

B. Ramakrishnan, Brundaban Sahu

Published 2012-07-21, updated 2012-10-21Version 2

We evaluate the convolution sums $\sum_{l,m\in {\mathbb N}, {l+15m=n}} \sigma(l) \sigma(m)$ and $\sum_{l,m\in {\mathbb N}, {3l+5m=n}} \sigma(l) \sigma(m)$ for all $n\in {\mathbb N}$ using the theory of quasimodular forms and use these convolution sums to determine the number of representations of a positive integer $n$ by the form $$ x_1^2 + x_1x_2 + x_2^2 + x_3^2 + x_3x_4 + x_4^2 + 5 (x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2). $$ We also determine the number of representations of positive integers by the quadratic form $$ x_1^2 + x_2^2+x_3^2+x_4^2 + 6 (x_5^2+x_6^2+x_7^2+x_8^2), $$ by using the convolution sums obtained earlier by Alaca, Alaca and Williams \cite{{aw3}, {aw4}}.

Comments: To appear in IJNT
Categories: math.NT
Subjects: 11A25, 11F11, 11E20, 11E25, 11F20
Related articles: Most relevant | Search more
arXiv:math/0112137 [math.NT] (Published 2001-12-13, updated 2006-05-04)
Expansions of Theta Functions and Applications
arXiv:1401.4226 [math.NT] (Published 2014-01-17)
Some applications of eta-quotients
arXiv:1205.1781 [math.NT] (Published 2012-05-08, updated 2013-01-21)
Applications of the Kuznetsov formula on GL(3)