{ "id": "1207.5107", "version": "v2", "published": "2012-07-21T07:11:53.000Z", "updated": "2012-10-21T13:55:41.000Z", "title": "Evaluation of the convolution sums $\\sum_{l+15m=n} σ(l) σ(m)$ and $\\sum_{3l+5m=n} σ(l) σ(m)$ and some applications", "authors": [ "B. Ramakrishnan", "Brundaban Sahu" ], "comment": "To appear in IJNT", "categories": [ "math.NT" ], "abstract": "We evaluate the convolution sums $\\sum_{l,m\\in {\\mathbb N}, {l+15m=n}} \\sigma(l) \\sigma(m)$ and $\\sum_{l,m\\in {\\mathbb N}, {3l+5m=n}} \\sigma(l) \\sigma(m)$ for all $n\\in {\\mathbb N}$ using the theory of quasimodular forms and use these convolution sums to determine the number of representations of a positive integer $n$ by the form $$ x_1^2 + x_1x_2 + x_2^2 + x_3^2 + x_3x_4 + x_4^2 + 5 (x_5^2 + x_5x_6 + x_6^2 + x_7^2 + x_7x_8 + x_8^2). $$ We also determine the number of representations of positive integers by the quadratic form $$ x_1^2 + x_2^2+x_3^2+x_4^2 + 6 (x_5^2+x_6^2+x_7^2+x_8^2), $$ by using the convolution sums obtained earlier by Alaca, Alaca and Williams \\cite{{aw3}, {aw4}}.", "revisions": [ { "version": "v2", "updated": "2012-10-21T13:55:41.000Z" } ], "analyses": { "subjects": [ "11A25", "11F11", "11E20", "11E25", "11F20" ], "keywords": [ "convolution sums", "evaluation", "applications", "positive integer", "quasimodular forms" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.5107R" } } }