arXiv Analytics

Sign in

arXiv:1207.1947 [math.FA]AbstractReferencesReviewsResources

Compactness and an approximation property related to an operator ideal

Anil Kumar Karn, Deba Prasad Sinha

Published 2012-07-09Version 1

For an operator ideal $\mathcal A$, we study the composition operator ideals ${\mathcal A}\circ{\mathcal K}$, ${\mathcal K}\circ{\mathcal A}$ and ${\mathcal K}\circ{\mathcal A}\circ{\mathcal K}$, where $\mathcal K$ is the ideal of compact operators. We introduce a notion of an $\mathcal A$-approximation property on a Banach space and characterise it in terms of the density of finite rank operators in ${\mathcal A}\circ{\mathcal K}$ and ${\mathcal K}\circ{\mathcal A}$. We propose the notions of $\ell_{\infty}$-extension and $\ell_{1}$-lifting properties for an operator ideal $\mathcal A$ and study ${\mathcal A}\circ{\mathcal K}$, ${\mathcal}\circ{\mathcal A}$ and the $\mathcal A$-approximation property where $\mathcal A$ is injective or surjective and/or with the $\ell_{\infty}$-extension or $\ell_{1}$-lifting property. In particular, we show that if $\mathcal A$ is an injective operator ideal with the $\ell_\infty$-extension property, then we have: (a) $X$ has the $\mathcal A$-approximation property if and only if $({\mathcal A}^{min})^{inj}(Y,X)={\mathcal A}^{min}(Y,X)$, for all Banach spaces $Y$. (b) The dual space $X^*$ has the $\mathcal A$-approximation property if and only if $(({\mathcal A}^{dual})^{min})^{sur}(X,Y)=({\mathcal A}^{dual})^{min}(X,Y)$, for all Banach spaces $Y$.}For an operator ideal $\mathcal A$, we study the composition operator ideals ${\mathcal A}\circ{\mathcal K}$,

Related articles: Most relevant | Search more
arXiv:1508.01212 [math.FA] (Published 2015-08-05)
The Dual Form of the Approximation Property for a Banach Space and a Subspace
arXiv:math/0006134 [math.FA] (Published 2000-06-19, updated 2000-09-20)
An example of an asymptotically Hilbertian space which fails the approximation property
arXiv:2202.11500 [math.FA] (Published 2022-02-23)
Quotient algebras of Banach operator ideals related to non-classical approximation properties