arXiv:1207.1947 [math.FA]AbstractReferencesReviewsResources
Compactness and an approximation property related to an operator ideal
Anil Kumar Karn, Deba Prasad Sinha
Published 2012-07-09Version 1
For an operator ideal $\mathcal A$, we study the composition operator ideals ${\mathcal A}\circ{\mathcal K}$, ${\mathcal K}\circ{\mathcal A}$ and ${\mathcal K}\circ{\mathcal A}\circ{\mathcal K}$, where $\mathcal K$ is the ideal of compact operators. We introduce a notion of an $\mathcal A$-approximation property on a Banach space and characterise it in terms of the density of finite rank operators in ${\mathcal A}\circ{\mathcal K}$ and ${\mathcal K}\circ{\mathcal A}$. We propose the notions of $\ell_{\infty}$-extension and $\ell_{1}$-lifting properties for an operator ideal $\mathcal A$ and study ${\mathcal A}\circ{\mathcal K}$, ${\mathcal}\circ{\mathcal A}$ and the $\mathcal A$-approximation property where $\mathcal A$ is injective or surjective and/or with the $\ell_{\infty}$-extension or $\ell_{1}$-lifting property. In particular, we show that if $\mathcal A$ is an injective operator ideal with the $\ell_\infty$-extension property, then we have: (a) $X$ has the $\mathcal A$-approximation property if and only if $({\mathcal A}^{min})^{inj}(Y,X)={\mathcal A}^{min}(Y,X)$, for all Banach spaces $Y$. (b) The dual space $X^*$ has the $\mathcal A$-approximation property if and only if $(({\mathcal A}^{dual})^{min})^{sur}(X,Y)=({\mathcal A}^{dual})^{min}(X,Y)$, for all Banach spaces $Y$.}For an operator ideal $\mathcal A$, we study the composition operator ideals ${\mathcal A}\circ{\mathcal K}$,