{ "id": "1207.1947", "version": "v1", "published": "2012-07-09T04:48:48.000Z", "updated": "2012-07-09T04:48:48.000Z", "title": "Compactness and an approximation property related to an operator ideal", "authors": [ "Anil Kumar Karn", "Deba Prasad Sinha" ], "comment": "23 pages", "categories": [ "math.FA" ], "abstract": "For an operator ideal $\\mathcal A$, we study the composition operator ideals ${\\mathcal A}\\circ{\\mathcal K}$, ${\\mathcal K}\\circ{\\mathcal A}$ and ${\\mathcal K}\\circ{\\mathcal A}\\circ{\\mathcal K}$, where $\\mathcal K$ is the ideal of compact operators. We introduce a notion of an $\\mathcal A$-approximation property on a Banach space and characterise it in terms of the density of finite rank operators in ${\\mathcal A}\\circ{\\mathcal K}$ and ${\\mathcal K}\\circ{\\mathcal A}$. We propose the notions of $\\ell_{\\infty}$-extension and $\\ell_{1}$-lifting properties for an operator ideal $\\mathcal A$ and study ${\\mathcal A}\\circ{\\mathcal K}$, ${\\mathcal}\\circ{\\mathcal A}$ and the $\\mathcal A$-approximation property where $\\mathcal A$ is injective or surjective and/or with the $\\ell_{\\infty}$-extension or $\\ell_{1}$-lifting property. In particular, we show that if $\\mathcal A$ is an injective operator ideal with the $\\ell_\\infty$-extension property, then we have: (a) $X$ has the $\\mathcal A$-approximation property if and only if $({\\mathcal A}^{min})^{inj}(Y,X)={\\mathcal A}^{min}(Y,X)$, for all Banach spaces $Y$. (b) The dual space $X^*$ has the $\\mathcal A$-approximation property if and only if $(({\\mathcal A}^{dual})^{min})^{sur}(X,Y)=({\\mathcal A}^{dual})^{min}(X,Y)$, for all Banach spaces $Y$.}For an operator ideal $\\mathcal A$, we study the composition operator ideals ${\\mathcal A}\\circ{\\mathcal K}$,", "revisions": [ { "version": "v1", "updated": "2012-07-09T04:48:48.000Z" } ], "analyses": { "subjects": [ "46B50", "46B20", "46B28", "47B07" ], "keywords": [ "approximation property", "composition operator ideals", "banach space", "compactness", "finite rank operators" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1207.1947K" } } }