arXiv Analytics

Sign in

arXiv:1206.5867 [math.RT]AbstractReferencesReviewsResources

Minimal Faithful Representation of the Heisenberg Lie Algebra with Abelian Factor

Nadina Elizabeth Rojas

Published 2012-06-26, updated 2012-11-15Version 2

For a finite dimensional Lie algebra $\g$ over a field $\k$ of characteristic zero, the $\mu$-function (respectively $\mu_{nil}$-function) is defined to be the minimal dimension of $V$ such that $\g$ admits a faithful representation (respectively a faithful nilrepresentation) on $V$. Let $\h_m$ be the Heisenberg Lie algebra of dimension $2m + 1$ and let $\mathfrak{a}_n$ be the abelian Lie algebra of dimension $n$. The aim of this paper is to compute $\mu(\h_m \oplus \mathfrak{a}_n)$ and $\mu_{nil}(\h_m \oplus \mathfrak{a}_n)$ for all $m,n \in \mathbb{N}$.

Related articles: Most relevant | Search more
arXiv:1211.2503 [math.RT] (Published 2012-11-12)
Faithful Representations of Minimal Dimension of 6-dimensional nilpotent Lie algebras
arXiv:1606.06322 [math.RT] (Published 2016-06-20)
Classification of uniserial modules of $\mathfrak{sl}(2)\ltimes \mathfrak{h}_{n}$
arXiv:math/0312124 [math.RT] (Published 2003-12-05)
The homology of Heisenberg Lie algebras over fields of characteristic two