{ "id": "1206.5867", "version": "v2", "published": "2012-06-26T00:55:42.000Z", "updated": "2012-11-15T15:18:04.000Z", "title": "Minimal Faithful Representation of the Heisenberg Lie Algebra with Abelian Factor", "authors": [ "Nadina Elizabeth Rojas" ], "comment": "8 pages", "categories": [ "math.RT", "math.RA" ], "abstract": "For a finite dimensional Lie algebra $\\g$ over a field $\\k$ of characteristic zero, the $\\mu$-function (respectively $\\mu_{nil}$-function) is defined to be the minimal dimension of $V$ such that $\\g$ admits a faithful representation (respectively a faithful nilrepresentation) on $V$. Let $\\h_m$ be the Heisenberg Lie algebra of dimension $2m + 1$ and let $\\mathfrak{a}_n$ be the abelian Lie algebra of dimension $n$. The aim of this paper is to compute $\\mu(\\h_m \\oplus \\mathfrak{a}_n)$ and $\\mu_{nil}(\\h_m \\oplus \\mathfrak{a}_n)$ for all $m,n \\in \\mathbb{N}$.", "revisions": [ { "version": "v2", "updated": "2012-11-15T15:18:04.000Z" } ], "analyses": { "subjects": [ "17B10", "17B30", "20C40" ], "keywords": [ "heisenberg lie algebra", "minimal faithful representation", "abelian factor", "finite dimensional lie algebra", "abelian lie algebra" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1206.5867R" } } }