arXiv:1204.1825 [math.AP]AbstractReferencesReviewsResources
Schrödinger-Poisson equations with singular potentials in $R^3$
Yongsheng Jiang, Huan-Song Zhou
Published 2012-04-09Version 1
The existence and $L^{\infty}$ estimate of positive solutions are discussed for the following Schr\"{o}dinger-Poisson system {ll} -\Delta u +(\lambda+\frac{1}{|y|^\alpha})u+\phi (x) u =|u|^{p-1}u, x=(y,z)\in \mathbb{R}^2\times\mathbb{R}, -\Delta\phi = u^2,\ \lim\limits_{|x|\rightarrow +\infty}\phi(x)=0, \hfill y=(x_1,x_2) \in \mathbb{R}^2 with |y|=\sqrt{x_1^2+x_2^2}, where $\lambda\geqslant0$, $\alpha\in[0,8)$ and $\max\{2,\frac{2+\alpha}{2}\}<p<5$.
Related articles: Most relevant | Search more
arXiv:1308.6471 [math.AP] (Published 2013-08-29)
Convergence to equilibrium for positive solutions of some mutation-selection model
Infinitely many positive solutions for a Schrodinger-Poisson system
On the resonant Lane-Emden problem for the p-Laplacian