{ "id": "1204.1825", "version": "v1", "published": "2012-04-09T08:25:57.000Z", "updated": "2012-04-09T08:25:57.000Z", "title": "Schrödinger-Poisson equations with singular potentials in $R^3$", "authors": [ "Yongsheng Jiang", "Huan-Song Zhou" ], "comment": "23pages", "doi": "10.1016/j.jmaa.2014.03.034", "categories": [ "math.AP" ], "abstract": "The existence and $L^{\\infty}$ estimate of positive solutions are discussed for the following Schr\\\"{o}dinger-Poisson system {ll} -\\Delta u +(\\lambda+\\frac{1}{|y|^\\alpha})u+\\phi (x) u =|u|^{p-1}u, x=(y,z)\\in \\mathbb{R}^2\\times\\mathbb{R}, -\\Delta\\phi = u^2,\\ \\lim\\limits_{|x|\\rightarrow +\\infty}\\phi(x)=0, \\hfill y=(x_1,x_2) \\in \\mathbb{R}^2 with |y|=\\sqrt{x_1^2+x_2^2}, where $\\lambda\\geqslant0$, $\\alpha\\in[0,8)$ and $\\max\\{2,\\frac{2+\\alpha}{2}\\}