arXiv:1204.0597 [math.GT]AbstractReferencesReviewsResources
Arc index of pretzel knots of type $(-p,q,r)$
Published 2012-04-03, updated 2014-11-10Version 3
We computed the arc index for some of the pretzel knots $K=P(-p,q,r)$ with $p,q,r\ge2$, $r\geq q$ and at most one of $p,q,r$ is even. If $q=2$, then the arc index $\alpha(K)$ equals the minimal crossing number $c(K)$. If $p\ge3$ and $q=3$, then $\alpha(K)=c(K)-1$. If $p\ge5$ and $q=4$, then $\alpha(K)=c(K)-2$.
Comments: 12 pages, 7 figures, 2 tables
Categories: math.GT
Related articles: Most relevant | Search more
arXiv:1010.2916 [math.GT] (Published 2010-10-14)
A tabulation of prime knots up to arc index 11
arXiv:1704.01787 [math.GT] (Published 2017-04-06)
Mutation invariance of the arc index for some Montesinos knots
arXiv:2011.09943 [math.GT] (Published 2020-11-19)
Pretzel knots up to nine crossings