{ "id": "1204.0597", "version": "v3", "published": "2012-04-03T05:06:17.000Z", "updated": "2014-11-10T13:25:34.000Z", "title": "Arc index of pretzel knots of type $(-p,q,r)$", "authors": [ "Hwa Jeong Lee", "Gyo Taek Jin" ], "comment": "12 pages, 7 figures, 2 tables", "categories": [ "math.GT" ], "abstract": "We computed the arc index for some of the pretzel knots $K=P(-p,q,r)$ with $p,q,r\\ge2$, $r\\geq q$ and at most one of $p,q,r$ is even. If $q=2$, then the arc index $\\alpha(K)$ equals the minimal crossing number $c(K)$. If $p\\ge3$ and $q=3$, then $\\alpha(K)=c(K)-1$. If $p\\ge5$ and $q=4$, then $\\alpha(K)=c(K)-2$.", "revisions": [ { "version": "v2", "updated": "2013-01-25T14:16:36.000Z", "comment": "10 pages, 7 figures, 2 tables", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-11-10T13:25:34.000Z" } ], "analyses": { "subjects": [ "57M27", "57M25" ], "keywords": [ "arc index", "pretzel knots", "minimal crossing number" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1204.0597L" } } }