arXiv Analytics

Sign in

arXiv:1203.5501 [math.AP]AbstractReferencesReviewsResources

Willmore Spheres in Compact Riemannian Manifolds

Andrea Mondino, Tristan Rivière

Published 2012-03-25Version 1

The paper is devoted to the variational analysis of the Willmore, and other L^2 curvature functionals, among immersions of 2-dimensional surfaces into a compact riemannian m-manifold (M^m,h) with m>2. The goal of the paper is twofold, on one hand, we give the right setting for doing the calculus of variations (including min max methods) of such functionals for immersions into manifolds and, on the other hand, we prove existence results for possibly branched Willmore spheres under various constraints (prescribed homotopy class, prescribed area) or under curvature assumptions for M^m. To this aim, using the integrability by compensation, we develop first the regularity theory for the critical points of such functionals. We then prove a rigidity theorem concerning the relation between CMC and Willmore spheres. Then we prove that, for every non null 2-homotopy class, there exists a representative given by a Lipschitz map from the 2-sphere into M^m realizing a connected family of conformal smooth (possibly branched) area constrained Willmore spheres (as explained in the introduction, this comes as a natural extension of the minimal immersed spheres in homotopy class constructed by Sacks and Uhlembeck in \cite{SaU}, in situations when they do not exist). Moreover, for every A>0 we minimize the Willmore functional among connected families of weak, possibly branched, immersions of the 2-sphere having prescribed total area equal to A and we prove full regularity for the minimizer. Finally, under a mild curvature condition on (M^m,h), we minimize the sum of the area with the square of the L^2 norm of the second fundamental form, among weak possibly branched immersions of the two sphere and we prove the regularity of the minimizer.

Related articles: Most relevant | Search more
arXiv:1502.02097 [math.AP] (Published 2015-02-07)
Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications
arXiv:2304.10412 [math.AP] (Published 2023-04-20)
A note on Kazdan-Warner type equations on compact Riemannian manifolds
arXiv:0710.1358 [math.AP] (Published 2007-10-06)
Nodal solutions to quasilinear elliptic equations on compact Riemannian manifolds