arXiv:1502.02097 [math.AP]AbstractReferencesReviewsResources
Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds and applications
Published 2015-02-07Version 1
In this paper we extend Hardy-Littlewood-Sobolev inequalities on compact Riemannian manifolds for dimension $n\ne 2$. As one application, we solve a generalized Yamabe problem on locally conforamlly flat manifolds via a new designed energy functional and a new variational approach. Even for the classic Yamabe problem on locally conformally flat manifolds, our approach provides a new and relatively simpler solution.
Related articles: Most relevant | Search more
arXiv:1010.1906 [math.AP] (Published 2010-10-10)
Unique Continuation for Schrödinger Evolutions, with applications to profiles of concentration and traveling waves
A New Multiscale Representation for Shapes and Its Application to Blood Vessel Recovery
arXiv:1011.2911 [math.AP] (Published 2010-11-12)
Five lectures on optimal transportation: Geometry, regularity and applications