arXiv Analytics

Sign in

arXiv:1202.2915 [math-ph]AbstractReferencesReviewsResources

An Estimate on the Number of Eigenvalues of a Quasiperiodic Jacobi Matrix of Size $n$ Contained in an Interval of Size $n^{-C}$

Ilia Binder, Mircea Voda

Published 2012-02-14Version 1

We consider infinite quasi-periodic Jacobi self-adjoint matrices for which the three main diagonals are given via values of real analytic functions on the trajectory of the shift $x\rightarrow x+\omega$. We assume that the Lyapunov exponent $L(E_{0})$ of the corresponding Jacobi cocycle satisfies $L(E_{0})\ge\gamma>0$. In this setting we prove that the number of eigenvalues $E_{j}^{(n)}(x)$ of a submatrix of size $n$ contained in an interval $I$ centered at $E_{0}$ with $|I|=n^{-C_{1}}$ does not exceed $(\log n)^{C_{0}}$ for any $x$. Here $n\ge n_{0}$, and $n_{0}$, $C_{0}$, $C_{1}$ are constants depending on $\gamma$ (and the other parameters of the problem).

Related articles: Most relevant | Search more
arXiv:1001.3440 [math-ph] (Published 2010-01-20)
Simplicity of eigenvalues in Anderson-type models
arXiv:math-ph/0503061 (Published 2005-03-25, updated 2005-09-13)
Simplicity of eigenvalues in the Anderson model
arXiv:1007.4375 [math-ph] (Published 2010-07-26, updated 2012-02-10)
Distribution of Eigenvalues in Electromagnetic Scattering on an Arbitrarily Shaped Dielectric