arXiv:1202.2915 [math-ph]AbstractReferencesReviewsResources
An Estimate on the Number of Eigenvalues of a Quasiperiodic Jacobi Matrix of Size $n$ Contained in an Interval of Size $n^{-C}$
Published 2012-02-14Version 1
We consider infinite quasi-periodic Jacobi self-adjoint matrices for which the three main diagonals are given via values of real analytic functions on the trajectory of the shift $x\rightarrow x+\omega$. We assume that the Lyapunov exponent $L(E_{0})$ of the corresponding Jacobi cocycle satisfies $L(E_{0})\ge\gamma>0$. In this setting we prove that the number of eigenvalues $E_{j}^{(n)}(x)$ of a submatrix of size $n$ contained in an interval $I$ centered at $E_{0}$ with $|I|=n^{-C_{1}}$ does not exceed $(\log n)^{C_{0}}$ for any $x$. Here $n\ge n_{0}$, and $n_{0}$, $C_{0}$, $C_{1}$ are constants depending on $\gamma$ (and the other parameters of the problem).
Comments: 37 pages
Related articles: Most relevant | Search more
arXiv:1001.3440 [math-ph] (Published 2010-01-20)
Simplicity of eigenvalues in Anderson-type models
Simplicity of eigenvalues in the Anderson model
Distribution of Eigenvalues in Electromagnetic Scattering on an Arbitrarily Shaped Dielectric