{ "id": "1202.2915", "version": "v1", "published": "2012-02-14T02:58:45.000Z", "updated": "2012-02-14T02:58:45.000Z", "title": "An Estimate on the Number of Eigenvalues of a Quasiperiodic Jacobi Matrix of Size $n$ Contained in an Interval of Size $n^{-C}$", "authors": [ "Ilia Binder", "Mircea Voda" ], "comment": "37 pages", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We consider infinite quasi-periodic Jacobi self-adjoint matrices for which the three main diagonals are given via values of real analytic functions on the trajectory of the shift $x\\rightarrow x+\\omega$. We assume that the Lyapunov exponent $L(E_{0})$ of the corresponding Jacobi cocycle satisfies $L(E_{0})\\ge\\gamma>0$. In this setting we prove that the number of eigenvalues $E_{j}^{(n)}(x)$ of a submatrix of size $n$ contained in an interval $I$ centered at $E_{0}$ with $|I|=n^{-C_{1}}$ does not exceed $(\\log n)^{C_{0}}$ for any $x$. Here $n\\ge n_{0}$, and $n_{0}$, $C_{0}$, $C_{1}$ are constants depending on $\\gamma$ (and the other parameters of the problem).", "revisions": [ { "version": "v1", "updated": "2012-02-14T02:58:45.000Z" } ], "analyses": { "subjects": [ "81Q10", "47B36", "82B44" ], "keywords": [ "quasiperiodic jacobi matrix", "eigenvalues", "infinite quasi-periodic jacobi self-adjoint matrices", "corresponding jacobi cocycle satisfies", "real analytic functions" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.2915B" } } }