arXiv:1202.2226 [math.FA]AbstractReferencesReviewsResources
The Cauchy Singular Integral Operator on Weighted Variable Lebesgue Spaces
Alexei Yu. Karlovich, Ilya M. Spitkovsky
Published 2012-02-10Version 1
Let $p:\R\to(1,\infty)$ be a globally log-H\"older continuous variable exponent and $w:\R\to[0,\infty]$ be a weight. We prove that the Cauchy singular integral operator $S$ is bounded on the weighted variable Lebesgue space $L^{p(\cdot)}(\R,w)=\{f:fw\in L^{p(\cdot)}(\R)\}$ if and only if the weight $w$ satisfies \[ \sup_{-\infty<a<b<\infty} \frac{1}{b-a}\|w\chi_{(a,b)}\|_{p(\cdot)}\|w^{-1}\chi_{(a,b)}\|_{p'(\cdot)}<\infty \quad (1/p(x)+1/p'(x)=1). \]
Comments: 17 pages
Related articles: Most relevant | Search more
Self-adjointness of Cauchy singular integral operator
arXiv:0808.2390 [math.FA] (Published 2008-08-18)
Weighted Hardy and singular operators in Morrey spaces
arXiv:1002.4813 [math.FA] (Published 2010-02-25)
Singular integral operators on Nakano spaces with weights having finite sets of discontinuities