{ "id": "1202.2226", "version": "v1", "published": "2012-02-10T10:06:16.000Z", "updated": "2012-02-10T10:06:16.000Z", "title": "The Cauchy Singular Integral Operator on Weighted Variable Lebesgue Spaces", "authors": [ "Alexei Yu. Karlovich", "Ilya M. Spitkovsky" ], "comment": "17 pages", "categories": [ "math.FA", "math.CA" ], "abstract": "Let $p:\\R\\to(1,\\infty)$ be a globally log-H\\\"older continuous variable exponent and $w:\\R\\to[0,\\infty]$ be a weight. We prove that the Cauchy singular integral operator $S$ is bounded on the weighted variable Lebesgue space $L^{p(\\cdot)}(\\R,w)=\\{f:fw\\in L^{p(\\cdot)}(\\R)\\}$ if and only if the weight $w$ satisfies \\[ \\sup_{-\\infty