arXiv Analytics

Sign in

arXiv:1202.1622 [math.RT]AbstractReferencesReviewsResources

Geometric realization of Khovanov-Lauda-Rouquier algebras associated with Borcherds-Cartan data

Seok-Jin Kang, Masaki Kashiwara, Euiyong Park

Published 2012-02-08, updated 2012-10-22Version 2

We construct a geometric realization of the Khovanov-Lauda-Rouquier algebra $R$ associated with a symmetric Borcherds-Cartan matrix $A=(a_{ij})_{i,j\in I}$ via quiver varieties. As an application, if $a_{ii} \ne 0$ for any $i\in I$, we prove that there exists a 1-1 correspondence between Kashiwara's lower global basis (or Lusztig's canonical basis) of $U_\A^-(\g)$ (resp.\ $V_\A(\lambda)$) and the set of isomorphism classes of indecomposable projective graded modules over $R$ (resp.\ $R^\lambda$).

Related articles: Most relevant | Search more
arXiv:2312.10582 [math.RT] (Published 2023-12-17)
A geometric realization of the asymptotic affine Hecke algebra
arXiv:1003.5019 [math.RT] (Published 2010-03-25)
Lectures on geometric realizations of crystals
arXiv:1210.6542 [math.RT] (Published 2012-10-24)
Affine Cellularity of Khovanov-Lauda-Rouquier algebras in type A