{ "id": "1202.1622", "version": "v2", "published": "2012-02-08T08:27:13.000Z", "updated": "2012-10-22T11:56:48.000Z", "title": "Geometric realization of Khovanov-Lauda-Rouquier algebras associated with Borcherds-Cartan data", "authors": [ "Seok-Jin Kang", "Masaki Kashiwara", "Euiyong Park" ], "comment": "We revise a few typos, and update references", "doi": "10.1112/plms/pds095", "categories": [ "math.RT", "math.AG" ], "abstract": "We construct a geometric realization of the Khovanov-Lauda-Rouquier algebra $R$ associated with a symmetric Borcherds-Cartan matrix $A=(a_{ij})_{i,j\\in I}$ via quiver varieties. As an application, if $a_{ii} \\ne 0$ for any $i\\in I$, we prove that there exists a 1-1 correspondence between Kashiwara's lower global basis (or Lusztig's canonical basis) of $U_\\A^-(\\g)$ (resp.\\ $V_\\A(\\lambda)$) and the set of isomorphism classes of indecomposable projective graded modules over $R$ (resp.\\ $R^\\lambda$).", "revisions": [ { "version": "v2", "updated": "2012-10-22T11:56:48.000Z" } ], "analyses": { "keywords": [ "geometric realization", "khovanov-lauda-rouquier algebras", "borcherds-cartan data", "kashiwaras lower global basis", "symmetric borcherds-cartan matrix" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1202.1622K" } } }