arXiv:1201.2206 [math.AP]AbstractReferencesReviewsResources
Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy
M. Burak Erdogan, William R. Green
Published 2012-01-10Version 1
We investigate $L^1(\R^2)\to L^\infty(\R^2)$ dispersive estimates for the Schr\"odinger operator $H=-\Delta+V$ when there are obstructions, resonances or an eigenvalue, at zero energy. In particular, we show that the existence of an s-wave resonance at zero energy does not destroy the $t^{-1}$ decay rate. We also show that if there is a p-wave resonance or an eigenvalue at zero energy then there is a time dependent operator $F_t$ satisfying $\|F_t\|_{L^1\to L^\infty} \lesssim 1$ such that $$\|e^{itH}P_{ac}-F_t\|_{L^1\to L^\infty} \lesssim |t|^{-1}, \text{for} |t|>1.$$ We also establish a weighted dispersive estimate with $t^{-1}$ decay rate in the case when there is an eigenvalue at zero energy but no resonances.